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We consider problems involving semi-infinite cracks in a porous elastic material.
The cracks are loaded with a time dependent internal stress, or pore pressure. Ei-
ther mixed or unmixed pore pressure boundary conditions on the fracture plane
are considered. An asymptotic procedure that partly uncouples the elastic and
fluid responses is used, allowing an asymptotic expression for the stress intensity
factors as time progresses to be obtained. The method allows the physical pro-
cesses involved at the crack tip and their interactions to be studied. This is an
advance on previous methods where results were obtained in Laplace transform
space and inverted numerically to obtain real-time solutions.

The crack problems are formulated using distributions of dislocations (and
pore pressure gradient discontinuities when necessary) to generate integral equa-
tions of the Wiener—Hopf type. The resulting functional equations are, of course,
identical to those considered by C. Atkinson and R. V. Craster, but with the
alternative formulation we develop an asymptotic procedure which should be ap-
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388 R. V. Craster and C. Atkinson

plicable to other problems (e.g. finite length cracks). This asymptotic procedure
can be used to derive asymptotic expansions for more complicated loadings when
the numerical effort involved in evaluating results would be excessive.

A large-time asymptotic method is also briefly described which complements
the small-time method.

The operators for poroelastic crack problems are inverted for a particular load-
ing; the reciprocal theorem for poroelasticity is used together with eigensolutions
of the fundamental problems to deduce the stress (or where necessary the pore
pressure gradient) intensity factors for any loading. These formulae extend pre-
vious results allowing a wide range of different loadings to be considered. As
an example, the stress intensity factor for a point loaded crack is derived and
the asymptotic method is applied to this problem to derive a simple asymptotic
formula.

Finally, an invariant integral, which is a generalization of the Eshelby energy-
momentum tensor, is used to derive integral identities which serve as a check on
the intensity factors in some situations.

0. Nomenclature

« Biot’s coefficient of effective stress,
i.e. the ratio of fluid volume to the volume change of
solid allowing the fluid to drain, where 0 < a <1

B Skempton’s pore pressure coefficient (Skempton 1954),
i.e. the ratio of induced pore pressure to the variation of
mean normal compression under undrained conditions

c generalized consolidation coefficient

0ij Kronecker delta

e dilatation

€ij components of the strain tensor, e = eg
K permeability coefficient

G the shear modulus

d¢/dp|e a measure of the change in fluid content generated
in a unit reference volume during a change of pressure
with the strains kept constant(= Q')

m mass of fluid per unit volume
U, Uy drained and undrained Poisson ratios, where v < v, < 0.5
P perturbation pore pressure, i.e. the increase in
fluid pressure from a reference pressure po
q; mass flux vector
o reference density
Oij stress tensor
U displacement vector
¢ variation of fluid content per unit reference volume,

i.e. mass of fluid per unit volume/initial density po (thus m = po()

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY L\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Crack problems in a poroelastic medium 389

The following relations are used in the text.
3(vy —v) _ 2GB*(1 - 2v)(1+v,)?

= Bt ) ©T S0 —2m)
o 1l-v (1=
TT1w T o0, )
_ 2GB(1+w,) _ 2kB*G(1-v)(1+v,)?
2Gu = 31—wy) €= 91 —v)(vu —v)

1. Introduction

The equations of linear, isotropic poroelasticity were introduced by Biot (1941)
and were shown to be mathematically equivalent to the fully coupled thermoelas-
tic equations by Biot (1955). Hence, the results below are valid for fully coupled
thermoelastic materials. For thermoelastic materials a coupling parameter ap-
pears which is typically small, this is usually used to uncouple the equations,
leading to the theory of thermal stresses. For a poroelastic material the equa-
tions are fully coupled and no such approximation can be made, hence we refer
primarily to poroelastic variables in the following. Noting the mathematical anal-
ogy between temperature and pore pressure, fluid volume content and entropy
the results can be interpreted in terms of thermoelastic variables if necessary.

The poroelastic theory attempts to model the mechanical response of a porous
material which has a solid elastic skeleton with the pore space filled with a vis-
cous fluid. The equations derived by Biot involve a coupling of the theories of
elasticity and diffusion; there is an explicit coupling between the dilatation of
the elastic skeleton and the pressure in the diffusing pore fluid. The governing
equations can be derived by using Darcy’s equation to model the diffusion pro-
cess, a mass conservation equation for the pore fluid and the equilibrium equation
for the stress. The equations were derived by Biot using this phenomenological
approach and have subsequently been derived using homogenization theory (Au-
riault 1980; Burridge & Keller 1981) and mixture theory (Bowen 1982). Hence,
the fundamental basis of the equations is well founded. The poroelastic materials
differ from the corresponding quasi-static elastic solids as a time dependence is in-
troduced into the otherwise time independent elasticity equations. This diffusing
pore fluid can have a large effect; for example, for rapid loadings (compared with
the diffusion timescale) the material response is stiffer than for slower loadings
as the fluid has less time to diffuse away. In particular the stress intensity factors
which characterize the singular near crack tip stress fields for fracture problems
are time dependent, and depend upon the pore pressure boundary conditions on
the fracture plane.

The theory is relevant to the fracture of rocks and can be applied to geophysical
problems (for a review, see Rudnicki 1985). This work is motivated by applica-
tions to fracture and fault initiation, propagation and creep in porous rocks.
Such problems of fracture where there is pore fluid interaction are believed to be
important in fault creep and in enhancing the recovery of oil via the hydraulic
fracturing process. The sequence of model problems considered here is aimed at
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understanding and modelling the physical processes that occur. As an example,
one can imagine that during the initiation of fracture in the hydraulic fractur-
ing process, when a crack is pressurized by pumping fluid into it, the fluid in
the crack may leak out into the formation. This causes a volume expansion of
the material around the crack, tending to close the fracture. There will also be
external stress or pore pressure fields which may affect the fracture. Therefore,
there is a complicated interaction between the diffusing pore fluid and applied
loading, which must be modelled correctly if fracture in fluid filled materials is
to be understood.

The equations taken here are quasi-static, the effect of inertia is neglected; this
is because the effects which we are considering should happen on a timescale
large compared with that for wave propagation. It should be noted that Biot
extended his theory to include inertia (see, for example, Biot 1956 a, b) and that
some attempts at solving the fully coupled dynamic thermoelastic crack problems
are possible (Atkinson & Craster 1992b).

The governing equations used are those of Biot (1941), which were reformu-
lated by Rice & Cleary (1976, hereafter [RC]). The equations are characterized
by five independent constants; G, v, v,, k and B (the shear modulus, drained
and undrained Poisson’s ratios, the permeability coefficient and Skempton’s pore
pressure coefficient) some typical values of these parameters are given in [RC].
For instance values given there (for Berea sandstone) are v, = 0.33, v = 0.2,
B =0.62, G = 60 kbar, ¢ (for water saturated sandstone)= 1.6 x 10* cms~2, (for
Westerly Granite) are v, = 0.34, v = 0.25, B = 0.85, G = 150 kbar, ¢ (for water
saturated) = 0.22 cms™2 the material properties of rocks vary widely, particu-
larly in their permeabilities. The theory is also applicable to saturated clays, this
soil mechanics limit is recovered by taking v, — 3, B — 1 with the results that
in the notation used here (see Nomenclature) G, — G, 77— n, a — 1, ¢ — 2Gnk
and Q — oo. The pore space can, of course, be filled with more viscous fluids,
hence it is advantageous to keep the theory as general as possible.

The stress o;; is given by

2Gv
(1-2v)

with €;; as the strain tensor and e = €y, is the dilatation. The pore pressure, p,
satisfies the following relation between the variation of fluid volume content, (,
and the dilatation, e,

p=QC - aQe. (1.2)

Provided there are no body forces or fluid sources the governing equations can
be written as the equilibrium equation for the stresses
Oijj = 0, (13)

Darcy’s law which relates the mass flux to the gradient of the pore pressure,

05 = 2G€ij + 51 i€ — ap@-j, (11)

G = —pokp.i, (1.4)
and a mass conservation equation for the fluid

with m the mass of fluid per unit volume and p, as the reference density. The
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equations can be written as an elastic Navier equation with a coupling term for
the pore pressure and as a diffusion equation for the pore pressure with a coupling
term for the dilatation, i.e.

op
ot

- kQV?p = —a be (1.6)

GV?u; + —G——e,i —ap,; =0, v

(1-2v)

In our previous papers (Atkinson & Craster 1991; Craster & Atkinson 1992gq;
hereafter [AC| and [CA]) on time-dependent fracture in a poroelastic material,
the governing equations have been solved for an impulsively applied and spatially
exponentially decaying internal stress or pore pressure loading on the crack faces
of a semi-infinite crack. Solutions for the time-dependent stress intensity factors
were found using the Wiener—Hopf technique after the governing equations had
been Fourier transformed in space and Laplace transformed in time. In more
complicated cases, those with mixed boundary conditions for the pore pressure
on the fracture plane, a matrix functional equation was solved. Fortunately, this
matrix could be solved by first solving a subsidiary equation. The stress intensity
factors and the coefficients of the singular pore pressure gradient as functions of
the Laplace transform parameter were found; these transforms were then inverted
numerically. It is the aim of this paper to analyse and extend these results further,
by formulating the problems in an alternative manner which will make it simpler
to understand the processes at work. In particular we evaluate the Laplace trans-
forms as an asymptotic expansion in time and attempt to interpret the physical
mechanisms which are driving time dependent terms in the stress intensity fac-
tors. In doing so we avoid inverting Laplace transforms numerically; this can be a
difficult, and time consuming, numerical process, especially if the Laplace trans-
form parameter is embedded in a complicated formula, i.e. the stress intensity
factor in (4.15). We have used both the Stehfest (1970) and Talbot (1979) algo-
rithms, preferring (in hindsight) the latter. For a review of numerical methods
for Laplace transform inversion see Davies & Martin (1979) and a bibliography,
Piessens (1975).

The plan of the paper is as follows. First, we consider one of the simpler cases
which has unmixed pore pressure boundary conditions along the fracture plane.
Specifically, a semi-infinite permeable crack subjected to a spatially exponentially
decaying, impulsively applied, shear loading. An asymptotic procedure for solv-
ing the problem is developed and an asymptotic expansion for the stress intensity
factor in real time is given. The functional equations for the example case are
derived from a distribution of dislocations. Dislocation solutions are derived here
from the potential representations for the poroelastic equations given in Craster
& Atkinson (1992b) together with the transform inverses in Appendix A. These
dislocation solutions are well known ([RC]; Rudnicki 1987) and could alterna-
tively be evaluated using the complex variable technique as outlined in [RC]. The
dislocations have the useful property that they can be interpreted as being the
sum of an elastic dislocation (for an undrained material) and a pore fluid dipole
which is orientated to maintain the pore pressure boundary condition. Although
crack problems cannot be similarly uncoupled, it is possible to use the property
that poroelastic displacement dislocations separate into elastic and fluid driven
components to identify the asymptotic sequence of events in real time. For the
unmixed case (i.e. the pore pressure boundary condition is unmixed on the frac-
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ture plane) we formulate the problem as an integral equation for the stress in
terms of an unknown dislocation density. This equation is of Wiener—Hopf type;
we proceed to solve this problem using an asymptotic method for small times
relative to the diffusional timescale, thereby evaluating the ‘outer’ field and the
near crack tip field as they develop. The procedure is first to approximate the
Wiener—Hopf kernel in the limit of small times in an ‘outer’ limit and to correct
for any errors by rescaling the equations in an ‘inner’ limit. This method is similar
in principle to that developed by Atkinson (1975) for elastic cracks interacting
with boundaries.

The asymptotic method is also applied to more complicated mixed problems
(i.e. the pore pressure boundary conditions are different on the crack faces from
those on the fracture plane ahead of the crack) where we now have two coupled
integral equations to solve. We have integral equations for the stress and pore
pressure in terms of unknown distributions of dislocations and pore pressure
gradient (or pore pressure) discontinuities, these are treated in a similar manner.

The results for the intensity factors, as defined in (1.9) and (1.10) below, are
checked using an invariant integral based on a ‘pseudo’ energy momentum tensor
(Atkinson & Smelser 1982), which is a generalization of the Eshelby (1951) energy
momentum tensor. These checks lead to two integral identities which have to be
verified numerically and demonstrate the power of invariant integrals to check
complicated results in a relatively straightforward fashion.

The reciprocal theorem is applied to the crack problems to give formulae for the
stress (and pore pressure) intensity factors for any applied loading. Eigensolutions
of the crack problems are generated from the functional equations; these combine
with the known asymptotic behaviour of the ‘real’ crack problem to isolate the
intensity factors in terms of a single line integral. As an example of the asymptotic
method developed here, the method is applied to the problem of a point loaded
crack to derive a simple asymptotic formula for this loading.

The transform inverses and necessary results from previous papers to make
this paper self contained are given in the Appendices.

In the following we work extensively in Fourier transform space, defining the
Fourier transform of ¢(X) as

86 = [ e ax, (17
We use ¢ as the Fourier transform variable and also half-range transforms, i.e.
0= [ wlneax, (1.8)

the subscript + denotes that the transform is analytic in the upper half of the
complex & plane. A ‘minus’ transform is similarly defined as the integral from —oo
to 0 and is analytic in the lower half plane. The functions |¢| and I" = (£2 +1)1/2
used in the text are defined to be that branch of the square root with positive real
part and can be factorized into the products of functions analytic in the upper and
lower complex ¢ planes respectively. The function |£| = }r/ 251/ ? and has branch
cuts from i0. to +ioo. These branch cuts at the origin can be formally considered
to be at £id where d tends to zero. The function I' is defined as I' = I, . I'_, where
I'y = (&€ £1)Y/? with branch cuts from Fi to Fico respectively.

In the limit as r — 0 (r is the radial distance from the crack tip and 6 the
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polar angle, with 6 = 0 the fracture plane ahead of the crack tip) the asymptotic
behaviour of the stresses and pore pressure can be determined, i.e. for the tensile
stress loaded, mixed problem, the asymptotic behaviour is given from [AC| by

p(r,0,t) ~ Ky(t)(r/2m)"/? cos(36), (1.9)
05(r,0,1) ~ % £5(0), (1.10)

where f;;(6) is the usual elastic angular dependence. The functions K;(t), K»(¢)
are the mode 1 stress intensity and the pore pressure gradient intensity factors
respectively. The intensity factors quantify the dominant near crack tip é fields;
it is the aim of this work to evaluate these intensity factors and determine how
they are generated by the elastic-diffusion process.

For antisymmetric loadings, we use K3(t) to denote the pore pressure gradi-
ent intensity factor and Ky(t) to denote the mode 2 stress intensity factor, see
Appendix D.

In cases which are unmixed in the pore pressure boundary condition on the
fracture plane the pore pressure gradient is not singular at the crack tip. The
pore pressure gradient intensity factors are zero in these cases and only stress
intensity factors need to be identified.

2. The semi-infinite permeable crack

As an example of the asymptotic method we present it by using the method
on one of the problems treated in [CA]. Let us consider a permeable crack in a
poroelastic medium which is in equilibrium for ¢ < 0 and is impulsively loaded,
at t = 0, with an internal shear load. In this case the boundary conditions for
the equivalent half-plane problem, on y = 0, are

p(z,y,t) =0, oxn(z,y,t)=0 for all z, (2.1)

u(z,y,t) =0,z >0, o1z(z,y,t) = 106"/ *H(t) for z < 0. (2.2)
This is one of the simpler cases, as the pore pressure boundary condition is not
mixed on the fracture plane, so a scalar functional equation is obtained (a mixed
case would be an impermeable crack, the antisymmetric loading implies a p = 0
boundary condition on the fracture plane ahead of the crack tip; this leads to
a matrix problem which is treated in [CA]). The crack problem given by (2.1)
and (2.2) reduces to the following scalar Wiener—Hopf equation in Fourier and
Laplace transform space

T Toc%ay 1 1
NgY? 21 +i¢a) \NeYP No(ifar)(ifan)y?

(2G.)%k

1/2
ToC /a1
= 22 2y N_¢g?

C 6 +

: =X(). (23)
$/2(1+ i€ar) Ny (i/ar) (i/ar) Y
The derivation from potential representations of the governing equations is given

in [CA]. Briefly, the governing equations are Laplace transformed in time (s is the
Laplace transform variable) and then scaled to isolate s in the non-dimensional
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variable a; = a(s/c)'/? or as s*? in the loading term. Fourier transforming with

respect to the X variable, (£ being the Fourier transform variable with respect
to the scaled = coordinate X = z(s/c)'/2) then reduces the governing equations
to a system of differential equations depending only on Y. The functions 7, U_
are half range Fourier transforms of the shear stress and displacement (on y = 0)
respectively.

The function N(£) occurs naturally due to the interaction of the permeable
boundary conditions on the crack and applied loading; it is given as

N(&) =& - €I+ 1) +7. (2.4)

This is split into a product of functions analytic in appropriate half planes in [AC|
and in a form more amenable to asymptotic analysis in Appendix A of this paper.
Using Liouville’s theorem and appropriate edge conditions (the pore pressure is
non-singular and the displacements are finite) at the crack tip, the entire function
() is deduced to be identically zero. Using results from the functional equation
all the quantities of interest can be deduced, i.e. the transformed pore pressure
is deduced as

3P(E.Y.s) _ img (e Y o) e o ) @9
2B(1+vy) N_ $3/2(1 + i€ay) N, (i/a1) (i/ar) Y/ '

This consists of a diffusional part (the e™'¥ term) and a dilatational response
(the e~/ term) which maintains the pore pressure boundary condition on the
fracture plane. The stress intensity factor (in the transform variable s) is deduced

from (2.3) to be Ruls) = V2021, /sN, (i/ay). (2.6)
We recall that the s dependence is contained in a; which is defined as a; =
a(s/c)'/?. In the limit of small times (equivalently in Laplace transform space as
s — 00) this result can be checked independently using an energy release rate
argument as discussed in [CA]. By using the asymptotic expression for N, (§)
derived in Appendix A for £ small, we deduce that

a'’?ry , 17 \1/2 / U]
Ku(t) = % (H(t )+ ;lﬁ(t Jm)Y (4— v~ logt — ('%%)'lg/z—hﬂ@)
t 1 il n 2, 1,2
s (5 TN we "
% (1 _ (%_ﬁ)—”%> (1 -~ —log(t'/4))
+ (1~ y — log(t'/4))* + 1 — in%)) + O(t"“”)), (2.7)

for small times, where h = arccot[(27N?(0) —1)*/2]. In (2.7) v is Euler’s constant
and the Laplace transform results required are given in Appendix A. A graph
of this asymptotic form of the stress intensity factor (which is normalized by
dividing through by v/2ma'/?) as a function of the non-dimensionalized timescale
t' =tc/a?® (for v = 0.3, v, = 0.4) is shown in figure 1.

Also shown there for comparison is the full solution for the stress intensity
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Figure 1. The non-dimensionalized mode 2 stress intensity factor (for v = 0.3,y = 0.4) against
time, for the full solution, dotted line, the small time solution, dashed line, and the large time
solution, solid line.

factor which is inverted numerically using the Talbot (1979) algorithm. From
figure 1, the asymptotic result is extremely accurate for small values of the non-
dimensional timescale ¢’; this requires minimal computational effort, whereas a
numerical method can be time consuming. For some materials where the consoli-
dation parameter is small the asymptotic solution would be valid over a relatively
long period of time and hence is effectively the whole solution in these cases. This
solution is of value as it gives a real time result for the stress intensity factor.
It is also interesting as we hope the analysis of the integral equations will help
us to understand which terms in this expansion are driven by different physical
processes.

The pore pressure result (2.5) can also be checked independently in the neigh-
bourhood of the crack tip by using the asymptotic result for the pore pressure
deduced by an eigenvalue argument in [CA]. The solution above gives the full so-
lution for all the variables of interest, here we want to test the matching procedure
for this example as we have this exact solution for comparison.

(a) An integral equation method

In this section we outline how a simple asymptotic method can be applied to
deduce the solution, for small times, for the above example. We aim to show
the method we want to use for more complicated problems works correctly for
the semi-infinite model problem, and to try to understand the physical processes
which drive the stress intensity factor for small times. In the following analysis we
use the Laplace transform in time, with s the Laplace transform parameter. From
the dislocation solutions given in Appendix C, the stress on the z axis is related
to the unknown dislocation density, b(z, s), by the following integral equation

/0 b(x', s) (( 1 + 1 (_( 2¢? + 2¢K(|x — '|/€)

z—x') % x—1')3 (z— 2|z — /|

—o0 S

K0(|.’E — .'L”|/€) r_ 5']2(%’,0, 8) for x > 0,
+ (x — ) )) da’ = {—Toe"”/“/s for z < 0. (2:8)
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The integral above must be interpreted in the Cauchy principal value sense,
the expressions Ky(z), K;(z) denote modified Bessel’s functions, and 7, repre-
sents the unknown stress distribution ahead of the crack. We have defined € as
€ = (c/s)}/%. The integral equation is derived from the dislocation solutions of
Appendix C, in particular the Laplace transformed shear stress on the glide plane
for a dislocation with constant dislocation density, b, is

b/1 1/ 22 2 1
709 = (5 + 7 (—55 + gFilel/o + S Kallal/)) ). (29)
By using dislocation solutions in real time it would be possible to write the
integral equation (2.8) in an even more explicit form involving an integral with
respect to a time variable; for the method we use here there is no advantage in this.
The terms in the kernel of integral equation (2.8) correspond to the usual Cauchy
singular elastic kernel and terms involving modified Bessel’s functions; these can
be identified as being generated by dipoles orientated to satisfy the pore pressure
boundary condition. Finally there is a dilatational response to these dipoles.
Although this integral equation may appear to be hypersingular as z — «’, the
overly singular parts cancel, and the integral equation is Cauchy singular. In the
dislocation solutions fluid and elastic responses can be separated and the terms
in the kernel can be identified as due to elastic or fluid responses. We consider
crack problems here and elsewhere; these crack problems will not uncouple in such
a simple fashion. The aim is to identify, at least for small times, the sequence
of responses which drive the stress intensity factor (2.6). To solve this integral
equation we work in both Fourier and Laplace transform space and define ¢ =
(¢/s)!/2. For small times € is a small parameter we shall use this extensively.

Initially, we subtract out the applied loading in the undrained elastic limit,
we simply approximate the kernel by taking the limit for small € and obtain the
dislocation density for this simpler problem. However, by doing this we expect
to make an error near the crack tip, so we subtract off this first solution from
the full problem, scale on the small parameter, and solve this new problem. This
‘inner’ solution corrects for the approximation we previously made. We proceed
by going back to unscaled variables, subtracting off the solution we have corrected
for already, and solving the resulting problem to the required order. We scale on
the small parameter and solve the ‘inner’ problem and repeat this back and forth
process correcting each time for the approximations we have made. Corrected
solutions for the field variables are given by the sum of these ‘inner’ solutions.

Fourier transforming (2.8), using the dislocation solutions from Appendix C in
both Fourier and Laplace transform space, we use the half range transforms for
the shear stress

7'+:/ G12(z,0, 5)e™X” dz, (2.10)
0
and the transformed dislocation density
0
b= / b(z, )6 da, (2.11)
to deduce the following functional equation
ToG mh_ilx|e* / , 2 —2\1/2 | =/,2
- = — . 2.12
™ ST+ ixa) e (= IXI6E + €)Y 4 7/€) (2.12)
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|

The subseripts + and — denote functions that are analytic in the upper and lower
complex y planes (where y is the Fourier transform parameter) respectively, we
have not scaled the variables to remove the s dependence from the kernel (this
is the last bracketed term of (2.12)); this is the full problem written in unscaled
variables. The main advantage with working with these equations derived from
a distribution of dislocations is that they will automatically satisfy the pore
pressuve boundary conditions and are an alternative method of generating the
Wiener Hopt tvpe equations considered previously by the authors. 1t is clear we
could proceed as in §2 to get the full solution almost immediately, but let us
instead proceed as described above.

Initiallv. we solve  the functional equation (2.12) in the limit as ¢ — 0. For
these onter problems we define 7' to be the term in  the expression for the
transformed shiear stress which contains terms of order ¢//? and anticipate that
the transformed shear stress can be written as an expansion in powers of e, i.e.

o~ T AR (2.13)
A similar notation is used for the transformed dislocation density, b

Unfortunately these outer problems do not solve the problem correctly at each
order and a correction is required. For the inner problems we now scale on € by
defining a new Fourier transform variable as € = ex. The transformed integral
equation (2.12) is rewritten in terms of this rescaled transform variable. The
parts of the transformed integral equation which have been solved to the order to
which we are working are subtracted off, and the remaining functional equation
is solved. The notation we use for the expanblons of the outer transformed shear
stress. Ti ' in the inner transform variable is T /) The superscript i denotes
the expansion (in the inner variable) is taken to order €+1V/2 The unknown
tlanstormed shear stress which is the correction term of order € (412 is denoted
by TV at each step. If any logarithmic terms appear, i.e. (t1/2(log €)", these
are grouped together with the term involving ¢@+1/2, A 51m11ar notation is used
for the transformed dislocation density that, in the inner problem, is written
B(J.’L).

The outer fields give the transform solutions away from the crack tip and are
used to interpret how the crack appears in the far field. When written in the
inner transform variable and combined with the inner corrections they give the
full solution to the problem to a particular order. For instance the transformed
stress to order €'/? in the inner variables is given by

TELO'O) i Til,o).

The term T\ (omos from the first term in the expansion of 7.” in the inner
variable and T ) comes from a functional equation which corrects for the non-
uniformity to thlb order.

We now apply the method. In the unscaled (outer) equation, (2.12), we take
the limit as s — oo and solve the following problem

© Toa 7rb(_0)ix

s(1+ixa) - Ixls

(2.14)

This is just the equivalent elastic problem (with undrained Poisson’s ratio), and
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represents the problem in the far field in the limit of small times. This involves
the Fourier transform of the usual Cauchy singular integral for elasticity, i.e.

/0 bOys) o {a—-gfg(m,o, s) forz >0,

= 2.
—oo S(x — ) —70e™%/s for z < 0. (2.15)

Physically the fluid would not have had time to diffuse, hence in the far field
the problem appears to be a loaded crack in an elastic material (with undrained
moduli). This can be solved using standard Wiener—Hopf techniques to give the
following functional equation

7O . ma ( I ) _ %4 N Toa ~0. (216)
X

X7 s(+ixa) \xi? (/a)f?)  sx? T s(1+ixa)(i/a))?

This functional equation gives us solutions for TJ(FO), ). These are written in the
inner coordinates to give

o4 _ __ e me et 7€ wel o
' s(i/a)%iel? i€ 56 a(ifa)® " s is(i/a)} €} a2’
1/2 3/2 5/2
7TB(_O’4) _ To€ To€ To€ (2.18)

)% i) (/)Y a2
Clearly this solution will be incorrect to leading order from the approximation we
g

have made to the kernel, because of the non-uniform limit as ¢ — 0 and z — 0,
so we subtract (2.14) from the full problem and now solve

BOVij¢|

(1,0).
=~ n B[] N
smé

sT¢
In (2.19) we now switch to ‘inner’ coordinates defined by xe = &; ¢ = (¢/s)'/?

is our small parameter and recall that N(£) = &2 — [¢](¢2 + 1)Y/2 + 7. Note that
equation (2.19) combined with (2.14) would still be the exact problem; if we

replaced B9 by b(_O), no approximation would have been made. We solve (2.19)
to get the following functional equation

T3 (€ - (& +1)/fe]) = ©). (2.19)

T_(FI,O) 7'0i61/2 (L_ 1 )
VN, €s(ifa)? \ N+ N.(0)

(1?0)‘ 1.1/2

mBX "V iN_ Toie!/ N_ 1

=——m  t 0. 1/2 <_—— - ——_> =0, (2.20)
ST €s(i/a)y n N0

where the pole from 1/£ is taken to lie in the minus region. This is because it

comes from taking the limit in a minus function. The approximation we have

taken is equivalent to the loading appearing uniform in the inner region. Now

summing the contribution of the ‘inner’ limits for the stress we deduce that the
transformed stress corrected to this order is given by

T+ 180 = inge 2N, /s€/(1/a) N (0). (2.21)
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Crack problems in a poroelastic medium 399

Hence, the mode 2 stress intensity factor is given (to this order) by
T{_H(S) = Toal/z\/—i/SN+(O), (222)

which is precisely the leading order term in (2.7) obtained previously. The method
gives us corrections to the dislocation density and hence the corrections to all the
variables of interest.

Now we continue the method to give the next terms. We go back to the outer
variable x and solve

). .

w1 i
SO o SYAOR D) (2.23)

SX sn
The first term on the right-hand side is the next outer solution and the second
term comes from the next term in the expansion of the kernel combined with
v — B9 a5 we have already corrected for B in our previous inner solution.
The term B? is written in terms of the outer variable x. This corresponds to an
induced loading of the crack by a distribution of dipoles orientated to maintain
the pore pressure boundary condition on the crack faces. In real space this is the
following integral equation

/0 _‘267‘0D((—3:’/a)1/2)
oo s/

b (', s)

s(x— ') de

w6 (z — ')+

(2.24)

_ 79(x,0,s) forz >0,
0 for x < 0.

The function §(z) denotes the Dirac delta function and can be regarded as rep-
resenting a point source, the generalized function ¢’(x) corresponds to a point
dipole. The following result from generalized function theory has been used, in
the limit as a — oo

- K, (alz|) +a

1 ( 2 M) _ §'(). (2.25)

The integral involving &'(xz) can be found explicitly, but there seems no advan-
tage for the method we use here in doing so. It is perhaps easier to understand
the approximation using this integral equation. The first term is the corrected
dislocation density for the elastic loading (where D(x) is Dawson’s integral, see
Appendix A) acting to induce a distribution of dipoles. The second term is just
the Cauchy singular integral equation for elasticity, which will give the next term
in the dislocation density to correct for the new loading. Returning to (2.23), we
require the sum split of a term |x|((1+ixa)”' — (ixa)~') which we denote by
C(x)- By contour integration C4(x) is given by

1 log(Fixa)

Ci(x) = 7a (1+ixa) (2.26)

This sum split suggests the diffusion of pore fluid is altering the loading on the
crack and the sum split is rearranging this loading. The functional equation is
deduced in a similar manner to those previously. The correction to the dislocation
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density b and stress Tf) is given by

_ €70aC_ (X)Xl—/2 £ _ ETOG/X-IF/QC@(X)

Cmifa T e/
These transforms can be inverted using (A 5) of Appendix A if required. We

deduce Y B®? from (2.27) by rewriting (2.27) in the inner variable and
taking the limit as € tends to zero. Returning to inner variables we wish to
correct for any error which has been made in this approximation; we deduce the
following functional equation for the next order correction

m® = (2.27)

10 = B4 (8O - BOV)

¢ 2, i€ (3,2)
+—_— N — 7TB_’ +—_N7TB_’ ) 2.28
e -7 - (225)
After suitable rearrangement, so the Wiener—Hopf technique can be applied, we
find the stress Tf’z) is given by
iN,

To€3/? _
10D = T (90 N NL(0) 4~y + s loge/2)
¥ +

sa(i/a) N, (0)€

— (/6" )mslog(e/2a)).  (2.29)

To deduce the above we have subtracted out both the simple and double poles,
which come from a minus function, and we have used the sum split for

1_1
€ mi

We now consider the full expression for the corrected stress to order €3/2 in the
inner transform variable as TiO’Z) + Til‘o) + 13 4 Tf’m = Ti/ ? where

(log(i€) — log(—i¢)).

Ti/z _ 0N}
s(i/a)}*N,(0)
iel/2 32 1 i To€
X <_i/_2 + T <—3—/2 + _T/_Z_ (Tl11 + Nqo log(6/2a))>> + g(l)z (2.30)
+ + +

By using corrections for the dislocation densities we can find the corrections for
any other field variables. We now proceed in a similar fashion to deduce the next
order term by returning to outer variables and solving the following functional
equation

. 2 . .
r® =2 - po)IMEX 1 peayiac, peid g g))
s 81 SX

This equation is now the full equation with the approximations and the parts of
the kernel for which they are the solutions subtracted off. In real space it is the
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Crack problems in a poroelastic medium 401

following integral equation for b,

’ __EQ_.TO— —2' a2 — (—g' [a)V/? _QGQTODZ((—:L-’/a)l/?)
[ R D ) - ()

TTa\/T

b (2, 5) dz’ = {a&?(m,o, s) forz >0,

s(x —x') 0 for x < 0.
The function D;(z) is defined in Appendix A. The first term is interpreted as the
dilatational response to the dipoles induced by the elastic loading. The second
term is interpreted as a corrected distribution of dipoles, these are induced by
the loading which comes from the correction to the original elastic loading. The
final term is the usual Cauchy singular elastic integral equation, this contains the
dislocation density which will correct for the sum of these different loadings. We
return to (2.31) and solve this equation after the factorization for the sum split
of E(x) has been performed; E(x) = log(ixa)C(x), i.e.

o' (x — ')

(2.32)

E(y) = mUogz(ixa) 1 — log¥(—ixa). (2.33)

The split function E, (x) = —log®(—ixa)/2ma(1 + ixa) and the minus function is
given by E_(x) = E(x) — E+(x). Solving (2.31) we find

@ _ T0€2X_1'_/2 log®(—ixa)
* 2sm272(i/a) *a(1 + ixa)’

(2.34)

this can be inverted using results from Appendix A. A similar expression for 75
can also be deduced; by rewriting these in the inner variables and expanding,

we find their inner approximations Ts_4’4), 7B%*% . These approximations will be
incorrect in the neighbourhood of the crack tip, so we return to the inner variables
and solve

TV = (glr/sem) (6 — BEP)(N — 7+ €] - €)

+ 0% - BB (N -7+ |¢)) + B (N —7) + B®YN).  (2.35)
The above functional equation is rearranged in the usual Wiener-Hopf manner

to give the corrections to the stresses and dislocation densities. We obtain a full
expression for the corrected stresses to order €%/2? as

T_(‘_OA) + T-(l_l,()) + T_(i_2,4) + T5_3,2) + T_(‘_4,4) + T_(i_5,4),

this is
2 5/2{ N i
15/2 _ 32 To€ To€ + — €% 4 (nyy + nyy log(e/2a
+ + 3a§2 Sa2(i/a)},_/2N+(O)( §+ 3_/2( 11 12 g( / ))
€7 ((n = ) + (ma/77) log(e/2a) — oy log®(€/2a)). (2:36)

The limit of (2.36) as || — oo, suitably rescaled, is used to give an asymptotic
expression for the Laplace transformed stress intensity factor. This is inverted us-
ing the Laplace transforms given in Appendix A to give the asymptotic expansion
for the stress intensity factor in real time, i.e. (2.7).
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402 R. V. Craster and C. Atkinson

We now interpret the result in the following manner. The outer field is initially
that of an undrained elastic material with the same applied loading. To the next
order this is corrected for (to maintain the permeable boundary condition on
the crack faces) by a distribution of dipoles related to this initial loading. These
dipoles in turn redistribute the load on the crack, allowing a further approxi-
mation to be performed. The final-order outer solution is a combination of the
loading induced by the earlier dipoles inducing a correction to this dipole distri-
bution, together with a dilatation term which balances the pore pressure induced
on the fracture plane by the elastic loading. This outer solution has been found
using a rigorous asymptotic analysis of the integral equations. So we have been
able to partly uncouple the elastic and pore pressure responses for this problem.
We must emphasize the method outlined above is not designed to evaluate the
stress intensity factor for this particular problem in the most efficient manner
(this is done in [CA]), but to isolate the physical processes that are driving the
field variables and to obtain a real time asymptotic solution for the stress intensity
factor. We also want to verify that the method we intend to use for approximating
the kernel of the integral equation in inner and outer limits does indeed check
against existing results. The real time evaluation of the stress intensity factor
is valuable as we obtain an explicit formula requiring no numerical inversion of
Laplace transforms. In a later section this is illustrated by considering a crack
with a point load applied to the crack faces at specified distance from the crack
tip.

Similar results can be deduced for the other unmixed case, a semi-infinite crack
with impermeable crack faces loaded under tension, equation (85) of [CA]J; the
asymptotic results for the impermeable kernel function N () are required from
Appendix A. In this case the asymptotic expansion for the mode 1 stress intensity
factor for the impulsively introduced exponentially decaying loading is given by

1/2
K1 (t/) == @

N4(0)

4t/3/2 . o L Qt/3/2 , N
+ W(nl + im3 + 2mi M) + 3—7T—172—7—T—ﬁ—(log(t )y =35+ (2.37)
The appropriate constants are given in Appendix A. Note that to order ¢’ there
is no logarithmic contribution; this comes in at order ¢*/2. A similar analysis
to that for the other unmixed case can be performed. The order of events is as
follows: initially the outer field is that of an undrained elastic material, this gives
us the same first order term as in the case considered above. To the next order a
distribution of dipoles, related to the elastic loading, orientated along the crack to
maintain the pore pressure boundary condition on the crack are induced. These,
in turn, induce a dilatation and it is this which gives the next term in the outer
field. The explicit dipole response (i.e. the logarithmic terms) comes in at a higher
order.

(H') + 2t /7) 7, + t' (7y +72)

(b) An asymptotic approach for small s

Looking at the integral equation (2.12) it is also clear we could attempt to
perform an asymptotic small s analysis. To proceed we define § = 1/¢, 6§ is now
the appropriate small parameter. By Fourier transforming (2.8) and using the
dislocation solutions, from Appendix C, in both Fourier and Laplace transform
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Crack problems in a poroelastic medium 403

space we deduce the following relation between the half range transforms for the
shear stress, 7, and the transformed dislocation density, b_
To® mh_ilx|, . 2 o1 -
= : — x| (x* + 6%)12 + 76%). 2.
SOt ixa) sl (O = Il +6%)% +76%) (2.38)
This is solved in the limit as § — 0 to yield the following functional equation for
the stress and dislocation density

L0 _ Toa _ Wb(_())ilxl (1—1y)
T s(14ixa) sx (1-v)’

The ratio of 1 — v, to 1 — v arises as the dislocation solutions are derived using
the undrainied moduli. In real space this is the usual Cauchy singular equation
for elasticity, i.e.

/—oo (1-v) s(x—2') do = —T ew/“/s for z < 0. (2.40)

This is simply the elastic problem with drained Poisson’s ratio. This corresponds
to the physical situation & long time after loading when the excess pore pressure
created by the loading will have equilibrated. However, the equations are non-
uniform in the limit as 6 — 0 and x — o0, this is the reverse of the non-uniformity
which arose in the small times analysis. To correct for this we subtract out the
elastic solution from the full problem and then rescale. The rescaling chosen is
that the outer coordinate X = dx, this rescales our Fourier transform variable,
so we define £ = x/é. Physically this rescaling corresponds to reducing the crack
problem and magnifying the problem at infinity. For small times this rescaling
magnifies the crack problem and it is the ‘inner’ problem. For the large time
approach this outer problem is

Ty —

(2.39)

1/21/2 (1,0);
(1,0) 100k} 6 o 7B Vi|E|N
= D%+ 9 (N (- 1))+ T2 SET 2.41
+ 8(1/a)i/2ﬁ (77 2)) 8577 ( )

We have used in this equation the leading order, in &, behaviour of the elastic
dislocation density. We note that if we take the full elastic dislocation density in
the first term of (2.41) instead of B”® then the addition of (2.39) and (2.41) is the
full problem and no approximation would have made. The problem solved here
will be accurate to O(6), solving (2.41) using standard Wiener-Hopf methods,
gives

T Toad/? r0a8/?N_  wBUYiN_ Toad/?
1/2 T N1/ = m_- 12— . Nij2° (2.42)
LNy s(i/a){ "Ny s(i/a)y" (M — 3) s s(i/a)y
We use this, and the asymptotic behaviour of the transform, N, as £ — oo, i.e
_p )1/2
N () ~1— / arctan dp, (2.43)
€ p -7

to identify the correction term. Utilising an Abelian result for the transforms (the
limit as £ — oo, is analogous to X — 0 in real space) we identify the near crack
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tip results which in turn gives the corrected large time stress intensity factor in
real time as

Ku(t') ~ v2a'?r, (H(t’) + (7Y O/ + - ) (2.44)

and [ is given by

—r) 4 - U (2n—1)""
I= / arctan ( —7 dp =1- '(—5%—:‘1-)—175 arctan ——%—_—1—————
(2.45)

The non-dimensional timescale ¢ = tc/a®. The stress intensity factor is plotted
versus the full numerical solution from Craster & Atkinson (1992b) and the small
time asymptotic solution from above in figure 1 (for v = 0.3, v, = 0.4). The
solution is now adequately described by the asymptotics, picking up both the
increase in, and the levelling off of, the stress intensity factor.

3. A mixed problem

In previous papers [CA| and [AC] the emphasis has been on more compli-
cated problems that have mixed boundary conditions for the pore pressure on
the fracture plane. One example of this is a permeable crack opening under a
tensile loading, with the fracture plane ahead of the crack having an imperme-
able boundary condition due to the symmetry of the problem. Such a situation
can occur in the hydraulic fracture process, where one is propagating a fracture
into virgin rock. Such mixed problems are also required for a full study of cracks
in arbitrary stress fields. Consider a permeable crack subjected to an arbitrary
stress field. The stress field can be decomposed into a shear and a tensile compo-
nent. When considered individually, one has a shear loaded permeable crack (an
unmixed problem, see §2) and the tensile loaded permeable fracture (a mixed
problem). The aim of this section is to modify the asymptotic procedure so it can
be applied to these mixed problems and to try to understand what is happening
at the crack tip.

As in §2, we formulate the problem by considering the crack as being made of
a distribution of dislocations. In this case we use a distribution of impermeable
dislocations as these will have the appropriate pore pressure condition ahead of
the crack tip. We use a distribution of pore pressure gradient discontinuities to
annul the induced pore pressure along the crack faces, thereby maintaining the
permeable crack faces condition. We have two coupled integral equations to solve,
giving the pore pressure and tensile stress in terms of these distributions. These
integral equations are combined into a single integral equation which is solved
separately. The stress intensity factor is determined via the integral equation for
the pore pressure using the constraint that the pore pressure is not singular at
the crack tip. This constraint comes from physical considerations; a singular pore
pressure would lead to an infinite value for the energy at the crack tip, hence
we require the pore pressure to be non-singular. To formulate the integral equa-
tions we require the opening dislocation and pore pressure gradient discontinuity
solutions from Appendix C.

The specific problem we will treat here is the problem considered in [AC]. Let
us consider a permeable crack with an internally applied tensile loading, so the
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boundary conditions are, on y = 0,

p(z,y,t) =0, oxn(z,y,t) = —1e*/*H(t) for z < 0, (3.1)
o12(z,y,t) =0V z, (3.2)
op(z,y,t)/0y =0, wux(z,y,t) =0 for z > 0. (3.3)

In the Laplace transformed domain the integral equations are

S =1 [t (25

b s) <sgn(x - av:’)K1 (Ia: - x'l) -z _1 x')) Az, (3.4)

€ €

1/0 q(w_/’S) <_( € +° K1(|3:—x'|/e)+K0(|x_3;’|/6)>

$Jeee W z—a')?  |z—a|

N b(z', s) N b(z', s) ( 262 2eKi(|z —a'|/e)

(z — ') 7 \(e-2) (z-2)z—z

Kollo=lfo Kl —x’|/e>) -
(x — ') €

— {622(56)0)3)) x > 07

—T70€%/%/ 3, z < 0. (3.5)

In the above g(z’, s) and b(’, s) are unknown distributions of pore pressure gradi-
ent discontinuities and dislocation densities respectively, and p(z, 0, s), T22(z, 0, s)
are the unknown pore pressure and stress ahead of the crack. We note here as
an aside that if we were to set g(2’, s) to be zero in (3.5) above, this would be
the integral equation for the tensile problem where the crack is assumed to have
impermeable crack faces, i.e. the tensile, unmixed analogue of §2.

Returning to the present problem and using half range Fourier transforms, i.e.

P, :/ p(z,0,8)eXdz, T, :/ Ta2(,0,8)eX" dz (3.6)
0 0

(and minus transforms for the pore pressure gradient discontinuities and disloca-
tion density defined as in (2.11)), the transformed integral equations are written

P, g bom (|X| X )
2B(1+ v,) - s(x? +e2)1/? T is X (2 +e?)2)’ (3.7)

. Toa _7Tb ( <||_X—2>_|_X_l>
T s(1+ixa) is (X2 + €2)1/2 X

+ﬂ€— (| |—(2X—2>. (3.8)

X2 + e 2)1/2
Combining (3.4) and (3.5) in the combination 7,9 (.7:, 0, 8)+3p(z,0,s)/2B(14+v,) =
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m(x,0,s) gives the simpler integro-differential equation
1 0 P / 8 / —=—1
— [ (a9 + bl 915 ) Kol — V)1 ~77)

S J—oo

L (eKa(z—a|fe) € , _ [m(z,0,s) forxz >0,
-n ( |g[;—q;’| (q;—:[;’)Q de’ = —Toem/“/s fOI‘JJ<O, (39)
and in the transform domain
ToQ
M., - 0"
T s(1+ixa)
1 xmb_  mq_ _ _
— e (S5 ) (14 @ 6¢ - O3+ 7). (310

The half range transform M, is defined in a similar manner to (3.6). Equation

(3.10) has many terms in common with (2.12) above. We note ¢ the transformed
variation of fluid content is given by

— ]_ 7Tb_X e_(X2+5_2)1/2y
C(f? y? 8) - _2Guﬁs (71- - + l ) (X2 + 6_2)1/2'

We could consider the function 7 f_ = wq_—imb_x as being a distribution of point
fluid sources along the crack. This can be used as the basis of a numerical method
(see, for example, Detournay & Cheng 1987). It is easier to consider the problem
using 7f_ and wb_ as distributions of point sources and dislocations densities,
although we should note 7 f_ contains a term involving 7wb_ so the distributions
are coupled.

The equation (3.10) gives a direct relation between a ‘plus’ and ‘minus’ func-
tion. In [AC] and here, this relation is exploited to solve the full mixed problem.

In [AC] the full problem is solved directly from the governing equations, a
system of functional equations was derived which were solved using a subsidiary
equation similar to (3.10). With systems of interrelated functional equations it
is unusual to be able to solve the system using a reduction of this type, except
in special cases where symmetries allow a reduction to a simpler problem; the
physical reasons for the reduction in this case are now clearer. This subsidiary
equation relates the combination of the applied loadings, M., to an unknown
distribution of fluid sources which is multiplied by the permeable kernel (the
unscaled N(§) in [AC]). Thus, it represents the fluid variation caused by the
interaction between the applied loading and the permeable crack face condition,
the function L_ defined in [AC] is now be seen to be equivalent to a distribution
of point sources along the crack.

For the outer problems let us define 7', PY and MY in the same way as
we earlier defined Tf ) in the discussion preceding (2.13). The same notation is
used for the outer transformed dislocation density and pore pressure gradient

discontinuity b(_j), fij ). For the inner solutions we define 93_” ), Hf 7 ), MS:J ) and
B%) F9) a5 the inner transformed stress, pore pressure, split function, dislo-

cation density and pore pressure gradient discontinuity fields respectively. We
clearly have a more complicated system to solve, but the method is similar to

(3.11)
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Crack problems in a poroelastic medium 407

that used earlier. We approximate the integral equations by taking the limit as
e — 0 in the outer variables, and solve the resulting equations. Then we scale
on the inner variables and solve these equations to correct for any error made
in the previous approximation. In the inner variables we work with the equa-
tion for m(x, 0, s) (3.10) to identify the distribution of sources required and then
substitute into the transformed pore pressure integral equation (3.7) to find the
required distribution of dislocations. The constraint that the pore pressure is
non-singular at the crack tip is used to determine the correction to the stress
intensity factor via the edge conditions and the definition of i(z, 0, ).

Initially, in the outer variables, we take the limit as € — 0. Then the integral
equation for the stress reduces to the usual Cauchy singular integral equation
(2.15) with @y, replacing @1o. The results (2.17) and (2.18) therefore still apply,
with ero 4) replacing TSrO ) The outer stress field is initially unaffected by the
mixed pore pressure boundary conditions and the crack initially appears to lie in
an undrained elastic material. We find the distribution of sources induced using
the integral equation (3.9) for m(z,0, s) which in this outer limit is

1/ m®(z,0,s) forxz >0
_Z 0) (' _ I — » Uy =z Y,
| 10w Ko -l dr = {7 0 EEZ0 @y

S J—00

Recall that f(z’,s) is the distribution of pore fluid sources, after Fourier trans-
forming this integral equation we solve

(0)
©_ __To® _ _L. (3.13)
* o s(1+iyxa) s(x? +€2)1/?

1/2

Note in this problem we keep (x?+¢~2)!/? as a single term. The solution proceeds

in a standard manner giving fﬁo) as

(0) /20 —1 —1\1/2
Tfl 001y “(e7t +a™t) )
=[-x© 4 2+ —i/e)t2. 3.14

The constant X(© is determined from the edge conditions on the stress and pore
pressure, from which it is determined in general that in the limit as |x| — oo then
M, ~ T, and T} ~ Exfrl/ ?. Therefore ¥ plays an important role as it is not
only the constant which appears in the subsidiary equation, but also represents
(in transform space) the leading order behaviour of the stress field. Hence X ig

determined from Tio). Scaling on the inner variables determines FOY as

(0.0 Tol_€'/? TOF_ii/263/2 7'01"_i3_/265/2
TFOY = -

. eldaHY2 4
si(i/a)t? sig ( ) s§?a

(6_1 + a—1)1/2.

(3.15)
It is convenient to keep the terms (e~! + a~')Y/? intact rather than expanding
them explicitly for small e. We now move to the inner variables defined by £ = ex
and subtract off the parts of the integral equations which have been solved to
leave

MG =

F0) (0,0)
_emkFz N  enF> (N > ' (3.16)

— =1
s qI’ sI’ n
Phil. Trans. R. Soc. Lond. A (1994)
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This is solved to give
r, Mm% e _ _eN_erﬁl’O) 2roN_ _ 500 _ Toel/?
Ny is(i/a)Y*N, - 13(1/a) L2y 13(1/(1)1/2
(3.17)

The constant X% will give us the correction to the stress intensity factor. Using

the result for mF " we substitute this into the pore pressure integral equation.
The resulting functional equation can be deduced

3H_(,_1’0) e/%ry _ (1,0 To€el/?
172~ . ./ \1/2 1/2 — Tk | 2 — . . \1/2
2B(1+v)E”  is(i/a)l T, €L is(i/a)}
(1,0) 1/2 1/2
TBY _ To€ To€
= —— +7k_ (20 — = @0 = ). (3.18
iset/? - is( 1/0,)1/2) mieo( X is(i/a)i_/z) (3.18)

The function k(§) = 1 /N_F+§i/ ® and is split into a sum of ‘plus’ and ‘minus’
functions in Appendix A. From the condition that the pore pressure is non-
singular at the crack tip and using the asymptotic behaviour of k., X(1:9 can be
deduced and hence the leading order stress intensity factor is determined as

T0al/2\/2
N(N+(0)/7 —d)

Returning to the outer variables we subtract out the first-order solutions and
solve

Ki(t) ~ H(t). (3.19)

mb® x| f( )

TP =550 ey = _Il Z(fO - FO%). (3.20)

The solution of these equations gives us the transformed dislocation density b®

as b = 0; the next order outer contribution to the stress intensity factor is

zero. The source distribution is deduced to be

/20 1 —1\1/2
ex Toly (a™ +e€
7rf£2) X Toiy " ( )

= ST ixa) log(ixa)(x —i/€e)"/2. (3.21)

That the next term in the outer stress field is zero may appear rather surprising.
Physically, the dipoles that are initially induced are orientated along the crack
to maintain the pore pressure boundary condition ahead of the crack, and to
this order do not affect the stress field. There is also a distribution of sources
induced to negate the non-zero pore pressure on the crack faces. Returning to
inner variables, we once more solve the integral equation for mi(z, 0, s),

3,2
ng’” _NeFD (% - 1) TF&? + (%7— Jél) (FOD - p00),

]
(3.22)
This gives us the corrected distribution of sources 7F®? in terms of an arbitrary
constant X2 this constant is determined by substituting the results into the
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Crack problems in a poroelastic medium 409
pore pressure equation, which is
3r>? B 7B®? |¢| e
2B(1+v,)  is & sT
The solution of this equation gives us the stress intensity factor to this order as
1/2 2 H ——tl /4
_ e V2 H(t)— 25— (3.24)
n(—d+ N..(0)/m) N (0)7(3)
In a similar, but progressively more complicated manner to the above, we proceed
to find higher terms in the inner and outer expansions for the dislocation and

fluid source densities. This leads to the following asymptotic expression for the
mode 1 stress intensity factor (in Laplace transform space).

— (3) . \/§Toa1/2
B s(=d+ N (0)/7)
+ (€2/a¥?)(e7* + a™)V2(2n19 — icoT(n1y + Nz log(e/2a)))).  (3.25)
As Laplace transforms involving (¢! +a~')!/2 have no simple representation after

inversion into real time, we expand for small € and invert to get the following real
time result for K;(t'),

_ V2790 /? N icomt!"*
= 5t N, (0)/7) (H R N ORE)

(F& 4 F&2), (3.23)

Kl (t/) -

1/2y(,.—1 —1y1/2 icoT
(1= (e/a'?) (e +a )/m

Kl (t/)

icom 1/2 tl3/4

+ (277,12 - m(% +ny + n12(log(%t' ) — %1#(%)))) Tz) +- ). (3.26)
The sequence of events in the outer field is determined as follows: initially we
have a loaded crack in an undrained material. To the next order a distribution
of dipoles related to the elastic loading is induced along the crack faces; these
are orientated to maintain the no-flow condition ahead of the crack. There is a
dilatational response to these dipoles which produces a correction to the stress
intensity factor at a higher order. The dipoles also induce a pore pressure along
the crack faces; this is corrected for using a distribution of fluid volume sources.
The asymptotic method used here corrects for each part of this in turn, bringing in
the interaction terms leading to an accurate representation for the stress intensity
factor in real time. The method outlined above demonstrates the asymptotic
method for a system of coupled integral equations and the same method can
be applied to the mixed problem considered in [CA]. The method has allowed
us to separate the kernel and identify which parts of the kernel drive different
responses. A graph of the exact stress intensity factor (normalized by dividing
through by v/279a'/? and for v = 0.3, v, = 0.4) inverted numerically using the
Talbot (1979) algorithm and the asymptote are shown in figure 2.

The stress intensity factor for the mixed case is less than the unmixed case, as
the coefficient of singular pore pressure gradient contributes to terms in the in-
variant integral (4.3). We should also note that the case of a stress free crack with
an internally applied pore pressure can be similarly treated. The superposition of
this with the problem described in this section allows more general problems to
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10r7 101 105

t‘
Figure 2. The non-dimensionalized mode 1 stress intensity factor (for v = 0.3, v, = 0.4) against
time, for the full solution (4.15), dotted line, the small time solution, dashed line, and the large
time solution, solid line.

be evaluated. The large time asymptotics are determined in a similar manner to
that described for the unmixed case. This gives a large time asymptotic solution
as

AN ’7'(11/2 ’ 1 l _{ (iN+(O)/2ﬁ+w) ’
R0 (6) = Ve (B + s (54 2+ o)) +O(19/,t2)7’>

which is also shown in figure 2.

4. An invariant integral

In a previous paper (Atkinson & Craster 1992a, referred to as [ACa]), an in-
variant integral based on a ‘pseudo’ energy momentum tensor was introduced
in the Laplace transform domain, and its use was illustrated to check the shear
problem considered in [CA]. A similar check works for the tensile case as will be
demonstrated in this section. By choosing an appropriate model problem we get
an integral identity that acts as a powerful check on the analysis of [AC] and of
this paper. The stress and pore pressure intensity factors in the mixed cases are
complicated; an independent check is valuable.

By Laplace transforming the governing equations we deduce the following la-
grangian as derived in Atkinson (1991) for the poroelastic equations

2
— 4.1
+ 55 (4.1)
The elastic stress tensor £;; is defined as 7;; + apd;;. The Euler equations for this
lagrangian recover the Laplace transformed governing equations. The lagrangian
is used to derive invariant integrals based on a pseudo energy momentum tensor,
Py;, which can be used to check various poroelastic results, as in [ACa, it is given

by oL OL_

_— _ KD D ;
L= _%tijfij +ap Uy i + —

Py =
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Crack problems in a poroelastic medium 411

The invariant integral F'; defined by
FI =/1_31jnj ds (43)
s

is zero provided the integral encloses no singularities. The vector n; denotes the
unit normal vector to S.

(a) An application: the tensile problem

We now consider the problem of a permeable crack in a finite width strip
subjected to symmetric pressure conditions applied at +h. We compare this in
the limit as h — oo with a pore pressure loaded fracture in an infinite material.
As the method is similar to that in [ACa], we will only sketch the solution here.

Taking the semi-infinite tensile crack problem of [AC] and §3, we now consider
a stress free, but pore pressure loaded fracture, i.e. on y =0

o22(2,y,t) =0, p(z,y,t) = —qoe®’*H(t) for z <0, (4.4)
ahead of the crack from symmetry we take
op(z,y,t)/0y =0, wus(z,y,t) =0z >0, (4.5)

and along the fracture plane we take o15(x,y,t) = 0. This problem may appear
somewhat artificial, but it is convenient to decompose any loadings into a pure
stress or pure pore pressure loading and then superimpose them to get the re-
quired combination. This problem works with the invariant integral; the stress
free condition on the crack faces does not lead to an infinite contribution to the
stress intensity factor. We take the limit as a — oo, i.e. a stress free crack, uni-
formly loaded by a constant pore pressure. We deduce with the full analysis from
[AC] that the Laplace transformed mode 1 stress intensity factor and coefficient
of the singular pore pressure gradient in this limit are given by

— V23goc! Pico(s/c) '/
i) = S )2 (d = N, () /)N (0)

(4.6)

and

Rols) = mqoms/c)m/m ( (d B N+(0)>2 e (N_+<0_> N w)) @

N (0)(d— N.(0) 7 27

The appropriate constants, cg,d and w are given in Appendix A. The aim is to
use the invariant integral to check these results.

We now turn our attention to solving the following finite width strip problem
with the boundary conditions

Uy =y =0 and p = pof(s) on y = +h, (4.8)
and on y =0
p=0forx <0, 0p/dy=0forz >0, (4.9)
Uy =0for x>0, Ty =07Forz<0, (4.10)
712 = 0 for all z. (4.11)

We proceed by solving the one-dimensional governing equations at the ends of
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N\
Figure 3. The contour required for the strip problem.

the StI‘ip
K)Q—Q - OzQS@ —sp=20 g =0 (4 ].2)
]y2 D ) 12,2 ) .

as ¢ — £00. As in [ACa] we find the pore pressure and displacement fields along
the edges of the strip. By taking the invariant integral around the contour shown
in figure 3, we deduce in the limit as h — oo that

wEy(s)  Kas)1—v) _  aiw
165 4G 2cs%(s/c)1/?”

We subtract off the field as © — oo, this problem (in the limit as h — o0)
now corresponds to the uniformly loaded crack considered at the beginning of
this section. Substituting in (4.6) and (4.7) gives the resulting integral identity
(which is analogous to the equivalent check on the mixed, shear problem in (174)
of [ACa])

(4.13)

! 2 7 + (—iw 7)(ico))?
(N+(0)(d—N+(O)/'77)> ((d = N(0)/m)? + (—iw + N..(0)/7) (ico))

. 2
_ ico
1 (=xmm)
the constants d, ¢y and w are given in Appendix A as complicated integrals
involving split functions and this integral identity can now be verified numeri-
cally. This checks the intensity factors for a quite general problem and provides
considerable reassurance of the accuracy of the analysis.

There is another situation which can be analysed using the invariant integral
and that is to check the intensity factors in the small time limit. Let us recall the
intensity factors for the mixed, tensile case which is loaded internally under an
exponentially decaying tensile load, i.e. the problem considered in [AC] and § 3.
The mode 1 stress intensity factor is

K. (s) = 91/2gim/4 1/4 _Ticl/2F+(i/a,1) (/‘7+(i/@1)—co)
Falo) =2 E = SN ) <(—d+N+(0)/ﬁ))(;1 15)

=1, (4.14)

and the coefficient of the singular pore pressure gradient is

— A2l (i/ay)

K2(8) = (GG, 1oy (4 MO/ + (fan)(co = ki (i/ o))
+ qunz(iN+(0)/2ﬁ+ w))ei”/4(3/c)3/4(2\/2) (4.16)

(note that equation (86) of [AC] contains a misprint and (4.16) corrects this), the
overbars denote Laplace transformed quantities and we recall that a; = a(s/c)'/2.
If we consider the invariant integral (4.3) in the limit as ¢ — 0 or in Laplace
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Crack problems in a poroelastic medium 413

transform space as s — 0o, we use the analysis of §3 to identify the intensity
factors as an asymptotic expansion in s. As s — co we deduce the crack appears
stress free (as the loading is O(1/s)). We apply the integral around a circular path
at a distance sufficiently far from the crack tip for the material to be considered
as undrained. Then we take the integral along the crack faces and around a
vanishingly small circle at the crack tip. Let us take the outer solution to be the
elastic crack tip solution with undrained coefficients and the inner solution to be
the poroelastic crack tip solution as s — oo, i.e. from equations (3.18) and (3.19)
the intensity factors are

. 1/2

Kl(s) = \/57'0" >
s1(—d+ N (0)/7)

— Toia1/2 iN+ (0) ) 1 -

K. (s) = 12 /(- ) )

2(5) = g (T @ )2VE (/) (—d 4 N 0)/). (418)

We deduce from the invariant integral that in this limit,

K21 -w) _ rKy(s) | Ki(s)(1-v)
26 8 2G

where K, is the stress intensity factor for a similarly loaded elastic material,
ie. K. = v2ma'/?/s. Equation (4.19) gives the following relation, which is
checked numerically

(4.17)

(4.19)

1—v _ . _ _
<((1—_;‘)5 +7(N4.(0)/27 — W)2> =7(—d + N4(0)/7)*. (4.20)
This provides another valuable check on the earlier results, and another integral
identity which is checked numerically. The integral invariant provides a reassuring
and effective non-trivial check on the analysis both here and in [AC].

5. Poroelastic weight functions for cracks

Having inverted the poroelastic operators for a particular loading where the
internal stress decays exponentially, it is natural to try to use the functional
equations to deduce the solutions for more general loadings. Clearly, if the loading
in question can be written as a sum of exponentials the stress intensity factor
can be written out instantaneously. If, however, we have a point loading or a
combination of more complicated loadings, this may not work. We will use the
poroelastic reciprocal theorem (see, for example, Cleary 1977), which is valid
provided there are no point forces or fluid sources in the body

—x P — Ko ke
/S <Eijui — U+ (PP P p,j)> n; dS =0, (5.1)

where the overbars denote Laplace transformed quantities and the ; denotes
partial differentiation with respect to z;. The starred and unstarred fields are
two independent poroelastic states for the same volume V with surfaces S, and
n; is the unit normal to surface S. In [ACal, the reciprocal theorem was used
with appropriate eigensolutions to outline a numerical method whereby far field
numerical data could be used to evaluate the near crack tip fields. A similar
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WA

Figure 4. The contour to be used with the reciprocal theorem.

approach is used here; we choose eigensolutions of the crack problems which are
too singular in the stress (or pore pressure) at the crack tip. These eigensolutions
combine in the reciprocal theorem with the known asymptotic behaviour of the
near crack tip fields for the ‘real’ problem, i.e. the stresses (and in the mixed
cases, the pore pressure gradient) are square root singular, to give the integral
around the crack tip in terms of the stress intensity factor. This crack tip integral
is equal to an integral along the crack faces, which depends on the particular
loading applied.

Let us consider the shear loaded permeable crack of § 2. Eigensolutions of this
problem are deduced irom (2.3) with 7, = 0 (We set the crack face loading for
our eigensolution to zero without any loss of generality). Setting 7, = 0 also
removes one of the line integrals from the reciprocal theorem. We denote our
eigensolution by * and consider stresses which are O(r~%/2) at the crack tip, in
Fourier transform space this implies that

7} ~ O(6)) as [¢] = oo.
The functional equation from (2.3) is
™ (2GW)’k
N.&/* c

Remember that £ is the Fourier transform with respect to a scaled coordinate
X = x(s/c)V/2. C is an arbitrary constant which is determined by Liouville’s
theorem and the value of C' is found by comparison with the known asymptotic
form of the near crack tip stresses for the eigensolutions; see Appendix D. Using
the reciprocal theorem along the contour shown in figure 4 and taking the limit
as the outer contour tends to infinity we deduce that

UrN_¢? = C = V2K (s)(s/o) 472 (5.2)

e——igar:(s/c)l/2

— 1 5]
Ku(s) = — 01/4 n/oxOs/——— .
II( ) li_/Q\/i’}T( / 1_7/) 12 - N_(§)€1_/2 d§d$
(5.3)
We can recover the solution (2.6) for the exponentially decaying loading of
§2 using this formula. One can now consider any loading, let us choose a shear
loading @12(z,0,s) = —P(s)é(x + 1), i.e. a point load at x = —[ with arbitrary
time dependence. Then we find the stress intensity factor as

= 2P —w)P(s) (et (1-g*/ml})
Kuls) == —ym </ ¢ (1= 2N2(0)¢? /)

Ny (ig/l,) dg

> e N, (ig/l) dg )
no ¢ (M= (@®/B) + a/l(?/1f —1)1?)
Phil. Trans. R. Soc. Lond. A (1994)
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Crack problems in a poroelastic medium 415

where [; = I(s/c)/2. In the limit as ¢’ — 0 the answer predicted by considering
the crack tip to be a drained inclusion is recovered, as discussed in [CA], and as
t' — oo the elastic result is found.

The above result for the stress intensity factor (5.4) is difficult and time con-
suming to invert numerically and we have been unable to invert it to sufficient
accuracy, beyond a small time. It is for this reason that the exponential loading
has been preferred by us in previous works. Although it is simple to generalize the
loading mathematically (a simple sum split in the analysis is all that is required)
the numerical inversion becomes difficult; whereas, for the exponential load the
sum split is not required and the inversion is more straightforward. However,
by using the asymptotic procedure developed in previous sections the first three
terms in the stress intensity factor (for an impulsive loading P(s) = P/s) are
deduced as

~ ———--—-—\/ip
N4 (0)(ml)r/2
+t'(—(n21 — ndy) + (n11/277) (1 — v — log?t)
+in23((1 —y—logt)?+1— éwz)), (5.5)

Knu(t) (H(t') = 2(¢' /m) 2 (11 — Lnip(2 — 2log 2 — v — logt'))

given in terms of the non-dimensional timescale t' = tc/4(?. We would expect this
approximation to be as accurate as those in the previous sections. This asymp-
totic formula does yield some useful information; initially we have the undrained
response again, after this, however, the stress intensity factor decreases slightly.
The point load induces a dipole response. The subsequent fluid rearrangement
initially pushes fluid towards the crack tip, leading to a volume expansion of
the material, tending to close the crack in the neighbourhood of the crack tip.
This is reflected by a decrease in the stress intensity factor: this is in contrast to
the exponentially decaying loading for which the stress intensity factors increase
monotonically. This illustrates the main application of the asymptotic procedure;
it gives an accurate asymptotic expression for particular problems whose numer-
ical solution is computationally intensive. The above inverse Laplace transform
(5.4) requires in essence triple integrals to be performed which is numerically
intensive; the asymptotic formula takes virtually no computer time at all. Of
course it will only be accurate for small values of the non-dimensional timescale.
A plot of the stress intensity factor (normalized by dividing through by the elas-
tic result for a similarly loaded crack) is shown in figure 5 as a function of the
non-dimensional timescale t'.

The large time asymptotics are performed in a similar manner to §2b to give

Ku(t) ~ P2/al)2(H{) + I /732" +...), (5.6)
This is also shown in figure 5 and matches up with the small time result almost
exactly.
Similar eigensolutions to those above are used to generalize the other unmixed
case: the impermeable crack loaded internally under tension. The analogous for-
mula to (5.3) for the mode 1 stress intensity factor in this case is given by

_ 1 1— )7 0 0o a—ikz(s/c)t/?
Kl(S) = m(s/c)l/‘l(ﬁ:%"z‘/_wﬁgg(w,o,g?) /_Ooe_ﬁ_—(@dédx (57)

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 5. The non-dimensionalized mode 2 stress intensity factor (for v = 0.3, vy = 0.4) against
time (in powers of 10) for the delta function loading, the small time solution, dashed line , and
the large time solution, dot-dash line.

The mixed problems are more complicated as we now have a singular pore
pressure gradient at the crack tip, hence the pore pressure gradient intensity
factor will enter into the reciprocal theorem. However, it is possible to use the
reciprocal theorem together with two eigensolutions to identify both intensity
factors for any loading. Consider a symmetrically loaded, permeable crack, cf. § 3.
We require two different eigensolutions of this problem which must combine with
the asymptotic behaviour of the ‘real’ solution to isolate the intensity factors. The
first eigensolution is too singular in both the pore pressure (i.e. p* ~ O(r=%/2))
and the stress (i.e. 75, ~ O(r=3/2)) at the crack tip. We use the reciprocal theorem
to derive a relation between the sum of the intensity factors and a line integral
along the crack faces

(1-v)
G

KoK, + L K(s)K;

0 Tl
:/ <622(x,0, s)Uy(x,0,s) + gﬁ(x,o,s)%gli)> dz. (5.8)

The other eigensolution we consider (which we denote using the superscripts **
to prevent confusion) is too singular in the pore pressure at the crack tip, but
we take the stress to have the usual square root singularity. Because the stress
eigensolution has this behaviour at the crack tip, the integral around the crack
tip gives a term involving only the pore pressure gradient intensity factor, which
is equal to a line integral along the crack faces

op™(z,0, s) .
Oy

(5.9)
Hence, we use the two integrals to isolate the intensity factors separately. The
eigensolutions required for this problem are derived in [ACa|, where they are used
with the reciprocal theorem to outline a possible numerical method for relating

far field numerical data to near crack tip fields. We define K} and K} as the

- —kk 0
4—/1K2(8)K2 =/ (Egg(a:,O,s)ﬂ;*(x,O,s)—i-Sp(:v,O,s)

Phil. Trans. R. Soc. Lond. A (1994)
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coefficients of the singular behaviour of the eigensolutions, i.e. in the following
manner

K
cos 30, o(r,0,s) ~ L

]—9*(7‘, 9, S) ~ Wg”(e)

(5.10)

—k —*
)1/2

(27

The angular variation g,;(0) is given in [ACa]. We use the results we require
directly from [ACa]; for the first eigensolution

b11/2

f: \/2 /8)1/4, (511)
Bt (e o

where b is an arbitrary constant. The Fourier transforms of the displacement and
pore pressure gradient for the eigensolutions are also given there. By using these
in (5.8), the constant b cancels out and we show that

2B (14 1) 0 R () - 3(e/o) (V1 (0)/27 — i) Ka(s)

(1 =)
1/4
_ S/Cl/2 / / < B(1 + v,)7 T2(z, 0, 5) + £p(z, 0, s))( (co+k_(&))
1"_&'?:/2 e—i{m(s/c)l/2
N_ ¢v?

+ (N, (0)/7 — d)) —(z,0,s) d¢ dz. (5.13)

To isolate K,(s) we use the second eigensolution from [ACal. In this case the
eigensolution has the usual stress singularity at the crack tip, so when this is
combined with the asymptotic behaviour of the loaded crack this gives no con-
tribution to the reciprocal theorem. In this case

Ry =g \1//3 (N1 (0)/7 — d)(s/c) "%, (5.14)

where a is an arbitrary constant which cancels out later in the analysis. The
Fourier transforms of the displacement and pore pressure gradient follow from
results in [ACal, hence it is deduced that

/ / 1 +Vu)ﬁ 522($70?8) +£2]3(w,0,3))(k_§—j/-209—)-

_Ij—:)e—iﬁm(S/c 1/2( /e )3/4 1/2\/2
N- (N1.(0)/7 — d)

These results can be checked for the spatially exponentially decaying stress or
pore pressure loaded crack considered in [AC]. The integral indentity (A 27) from
Appendix A is required, and the formulae above generalize the results for the
intensity factors (4.15) and (4.16) to a completely arbitrary loading.

By using appropriate eigensolutions the mixed, anti-symmetric problem consid-
ered in [CA] can be similarly generalized. The method above demonstrates how

p(x7 07 8)

dédz. (5.15)
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the reciprocal theorem can be used together with eigensolutions of functional
equations to generalize the results with little effort.

Such generalizations have been used to derive the weight functions for elasto-
static problems (see, for example, Rice 1972) and a method closer to that used
here has been used by Burridge (1976) for elastodynamic problems. Once the
operators for any particular system have been inverted this can be utilized via
the reciprocal theorem to extend the range of the results.

6. Conclusion

In this paper we have re-examined the semi-infinite crack problems in an un-
damaged poroelastic material. The following are the main results.

1. The crack problems are reformulated as integral equations using distibu-
tions of dislocations (and fluid sources where appropriate). We have been able to
uncouple (for small times) the problems partly. This allows an asymptotic proce-
dure to be set up to solve these problems for small times and allows the physical
processes that drive the intensity factors to be interpreted.

2. The stress intensity factors for the crack problems loaded internally with an
impulsively applied and spatially exponentially decaying load, are found as an
asymptotic expansion for small times. This is an improvement on the previous
analysis, which relied on numerical inversion of Laplace transforms. The above
asymptotic method can be utilised to provide real time approximations for the
stress intensity factors for any loading and this is illustrated by considering a
point loaded crack. The asymptotic method, now its accuracy has been verified,
can also be applied to more complicated crack or inclusion problems to obtain
accurate, concise, real time results. In Atkinson & Craster (1993) some of the
integral equations that occur for finite length cracks are solved using singular
perturbation methods that are related to the method used here.

3. A large-time method is also derived and utilized to derive asymptotic large-
time formulae for the stress intensity factors.

4. The reciprocal theorem is used together with eigensolutions of the crack
problems to generate formulae that give the stress intensity (or pore pressure
gradient intensity where necessary) factors for any internal loading.

5. An invariant integral is used to check one of the more complicated problems:
the tensile case with mixed pore pressure boundary conditions on the fracture
plane, in two different situations.

C. A. thanks the Royal Society/SERC Industrial Fellowship scheme for their support and R.C.
the SERC for a Research Studentship. R. C. also thanks Corpus Christi College, Cambridge for
a Research Fellowship. Part of this work was done while both of us were at Schlumberger Cam-
bridge Research and the computing and other facilities of Schlumberger Cambridge Research
are gratefully acknowledged. We thank a referee for helpful suggestions.

Appendix A. Fourier transforms
If F' denotes the Fourier transform operator, then

7 () = (A1)

) T+ 1/2)

Phil. Trans. R. Soc. Lond. A (1994)
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where n is an integer, v(z) is the Gamma function defined to be

y(in+1) = /Oo t"e~" dt. (A2)

0
For the displacement fields the following transforms have to be inverted,

—lély —l€ly i i
F! (e ) = —llog(r), F! (e—) = %arctan (%) = lﬁ (A3)

iy ™ § T

These are arbitrary up to a constant, but because the displacements are similarly
arbitrary this constant is taken to be zero. If we let I'? = £2? + a? we similarly
deduce that

P ) = VKar), P <e_;y> - %Ko(ar). (A4)

In the text we also use the inverse Fourier transform of the delta function,
F~(1) = §(x). Using these basic transform results we can generate the inverse
transforms of £f(§) and I'f(£) by partial differentiation with respect to « and
y respectively. The outer solutions to the integral equations contain terms that
include
1 " V2H (x
F (W log(§/2i)> = ——‘#(w(% —n) —log(2z)), (A5)
¥

T )

) o i1+1/2’)’(n+ %)( + (¥(5 ) — log(2x))

_C(2’ % - n))’ (A 6)

where ((2,v) is Riemann’s generalized zeta function. To invert the Laplace Trans-
forms for the dislocation solutions we use 29.3.122 of Abramowitz & Stegun (1970,
hereafter [A]), i.e.

-t (—g—,ﬁlmaog@/m))?

+

L—1(5—1/2K1(k31/2)) — k—le—k2/4t, (A7)
and 29.3.120 together with the convolution theorem to deduce that
LY (s Ko(ksY?) = 1B (K*/4t), L7'(s™?K.(ks'/?)) = (t/k)Ex(K*/4t)).
A8
The E; above are exponential integrals ([A] 5.1.4). Below the symbol v (with no

argument) is used to denote Euler’s constant and the digamma function (k)
used in the inverse Laplace transform results below is described in 6.3 of [A],

L (log)/) = L w0~ tog)
L (o)) = S (k) ~ ot = (1), (A9)

Dawson’s integral D(x) and a function defined as D;(z) used in the text are given
by

D(z) = =" /0 " dt, Dig)=e /0 e (p(d) — 2logt)dt.  (A10)

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

a
///\ \\
P9

e \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
B\

y 9

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

420 R. V. Craster and C. Atkinson

Fourier transforms involving D(z) are derived in [AC] and [CA].
For the product splits required in the text we define N (&) as

N(&) =& = [l + )" + 7. (A11)
From contour integration as in [AC] we find
N_(§) 1 /1 p(L—p*)'?\ _dp
—_— ] = —= . A12
log ( No > A arctan o= T ( )

Although initially defined in the lower half plane, by analytic continuation this
defines a function valid in the whole complex plane except for the branch cut i0
to i. The ‘plus’ function is given from this by N, (§) = —N_(—¢&)/Ny). This result

is used to show that
NL(0) = ((1—v)/(1—w))2

In the text we require the asymptotic behaviour of N, (§) as £ — 0, it is easy to
rewrite log N(§) as log N(§) = log N (§) + log N_(§). By differentiating log N (&)
and after some manipulation an alternative representation of N, () is found as

~ 15 7 ~arctany - 1 € T~ ~arccotu
N, (§) = N.(0) (1 + (%ﬁ)1/2N+(0)> (1 ( )1/2N+(0)>

CEeH %i(>10g<<1+£2>1/2+1—i£> de

o E+5TNE(0) T \1-(1+€)2—ig (1+§2)1/2}’ (A13)

xexp[

where

_ (GENZ(0) = 1)

\GMYANL(0)+1)
The branch points here would initially appear to contradict the definition of N,
as a ‘plus’ function, but they do in fact cancel with terms in the integral. This
expression is checked numerically against NV, as defined by collapsing the contour
integral around the branch cuts. The exponential term in (A 13) can be rewritten
in a form more convenient for numerical work as

1 arcsin(&/i) %N_'_ (0)2 —— SiIl2 0
eXp | — / 1 2 in2
7 Jo 3NN+ (0)? —sin® 6

log(tan 36) de} . (A14)

The alternative expression for N () is of value as from (A 13) we find an asymp-
totic expansion for N, (&) for £ small as

N, (§) _ 1§ i& &2 ) %
N.(0) 7”7 og(&/2i) + s + T log(&/2i) — PR
€ e Est(TNIO) ~ 0
271'2ﬁ21 g"(£/21) V2N, (0)r
_ &2 log(&/2i)arceot((37NE(0) — 1)'/%)  €arceot (37N3(0) — 1)'?)
(M) 2N+ (0) () 2N+ (0)
—————52 1 152 1/2\y2 _ 1 3
_ﬁN_%.(O) (ﬁ(arCCOt((EnN;(O) -1) / ) — 5) +0(&°). (A 15)
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Figure 6. A comparison of the exact (solid) and asymptotic (dashed) values of N4 (ia), N+ (ia)
for 7j = 3.5. The upper pair of lines are those for N (ia) and the lower pair for Ny (ia).

For convenience we will write this asymptotic expansion as
N. (&) = NL(0)(1 +i&(nq; + niglog(€/21)) — €2 (nay + nagg log(£/21)

+ng3(log(€/20))*) + -+ (A16)

To show the accuracy of this a graph of N, (ia) for real a and the series approxi-
mation for N, (ia) in figure 6.

Although we present this graph for imaginary £ only, a similar accuracy is
obtained along other rays from the origin. This suggests we have successfully
captured the essential behaviour of N, (§) in the neighbourhood of the origin.

There is a simple relation between the coefficients in (A 16)

nor = ind, — (2ANZ(0))7", mas = indy,  noe = nina. (A17)
The sum split term k(&) in [AC] is given by
_ 1
IR AGINGEG

We note here in the sum split of k(¢) in [AC] there is a error in (197), which
should read

1 K(z) , 1 1 dy 1 - N, (0)
2_7rl/c z —gdz B 71‘/0 (iy + Oyl 2(1 — y)/2 (N_(_iy) 7 ) - (A19)

The asymptotic behaviour of this function is given in [AC] as |£| — oo

ki = co+ (N4 (0)/7 — d)E™" — (iN4(0)/271 + w)§ ™% + -+ (A20)

ky(§) + k- () (A18)

and
I
b =t (@-Ny =N O/ + (w3 (TR b ) )€
(A21)
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where the constants are
1 _2\1/2
I= g/ arctan (%) dp, (A22)
T Jo b=
1 dy 1 N, (0)
_ _ = — A2
co iTr/O y3/2(1 — y)l/2 (N_(—iy) n ) ’ (A23)
1 dy 1 N+(O)>
__1 _ A24
i=— [yt (w0 (A24)
ity dy 1 N, (0)
= — — . A25
w=2 1y~ (N_<—z'y> 7 ) (A25)

An alternative expression for k_ is found explicitly as
1t p (1 —p)'>N,(ip)
(k_(&) +co) =—— / ; ——
Ol =2 ), briowa—am +7)

™
By using these results, together with the reciprocal theorem, we deduce the in-
tegral identity

7 ((=i/a1)(co + k-(—i/a1)) + (N+(0)/7 — d))
_ (a2 (1 —v) i(ky(i/ar) —co) | _ (N4(0) i
~ a?N,(i/a)) <(1 —vu) (N4(0)/7 —d) +77< 27 )
x (= (N4 (0)/7 = d) + (i/a1) (o — ki (i/ar)))
— .\ ik (i/a1) — o)
+(N,(0)/27 — iw) RO ED) )) (A27)

This can be verified numerically, other integral relations can be similarly found.
The asymptotic behaviour of k(§) as £ — 0 be deduced as

No(§)  Ni(0) iénrg <r++£i/2>
k() ~ —— — . 1 = +0(). A28
+© e el m o\, —el N (429

The following sum split has been utilised, together with the asymptotic repre-
sentation for N, (&),

dp. (A 26)

1 1 r, +¢/?
(1‘+££/2>+ RGN <F+ —g.dn) (429)
For the impermeable kernel function N(£), which is defined as
N(&) = (/)T ~ &) — 7, (A 30)

we perform a similar analysis to that done for N (£). We note that N (£) has zeros
in the cut plane at £ = +ia;, where a; is given by

o = (ﬁ(2‘ﬁ)+(ﬁ2+4ﬁ)”2>1/2, (A31)

22m-1)
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We deduce that N(£) has branch cuts from 04 to +icy. In [CA] it is shown that

N_©) _1 v dp G tis
m(‘ﬁ()‘%/o a“ta“(<p2+m<1—p2>”2)p+i€Hog(1“5)’

(A32)
Although initially defined in the lower half plane, by analytic continuation this
defines a function valid in the whole complex plane, except for the branch cut
from i0, to ;. .
The result for N, (&) is the complex conjugate of N_(&)/Ny. Note that

— 1—v\2
N,(0)=N,(0) = .
) = N0 = (1)
This is checked numerically in both [CA] and [AC], and in [CA] is used in the
asymptotic limit as ¢ — 0 to prove in the unmixed cases that the stress intensity
factors are the same as those for a crack tip embedded in a drained inclusion.
As with (A 13) above we deduce another expression for N, (§) as

1

—_ . . —n " Yarctan®d . —m "~ ~arccotd
N.(€) = N1 (0)(as —iE) <1+ i§ ) (1_ i)

ay (1 i)'/ al/? al?

(4 ) (i)

1 arcsin(£/1) SiIl2 ¢(Sin2 ¢ + 3ﬁ/(]— _ 2_77_))
— log(tan 1¢)de| (A 33
* exp lﬂ /0 (a; — sin® @)(a_ — sin® ¢) og(tan 3¢) @) (A 33)
where
(=N (o)
with

= =2 | 4=\1/2
s = (ﬁ(" 2)2?; (_’72;)4’7) ) (A34)

The following asymptotic series for N (£) for £ small is deduced
Ni(§) ~ N (0)(1 +&(cr +di) + € (ca + crds + dp)
+&3(cs + €1ds + cody + ds — ses) + Eeslog(€/21)).  (A35)
The coeffieients are given by
a = ﬁar‘éé@t(d_ =12 gy =1(a2—1/20.), as=a(tas—1/20a),
(A 36)

b = (I/m(—ay)'/?) log[(—a4)/?/((1 — ay)V/2 = 1)], } (A37)
2

by = %(bf +1/2a), b3 = %bl(b2 - 1/2ay),
dy =a;+ b1, dy=by+aiby +as, d3=bs+ aibs+ azb + as, (A38)
a=i}-a1"), =G —32), c=1i(6a7' —5), (A 39)
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es = i/7. (A 40)
Equation (A 35) can be written as
N (€) ~ N+ (0) (1 +iémy + € + £ (73 + Tian log(€/21)) +-++), (A4l
where, in particular, 2m, = —7n? — 1/7. Note this expression contains no loga-

rithmic terms until order &3, implying the explicit diffusion interaction occurs at
a later stage in the equations. A graph of the series (A 35) is shown in figure 6
together with the exact result for N (ia). This expansion is more accurate in
relative terms than (A 16) as we have taken the expansion to a higher order.

Appendix B. The Fourier transformed variables

These representations for the Fourier transformed displacements, stresses and
pore pressure (in unscaled variables) are taken from Craster & Atkinson (1992b)

wy = —ix (A ()™ + A (e + yBu(x)e M), (B1)
—|x|A1(x)e™ XV — T'A;(x)e ™™ — yBi(x)|xle™ ¥
—(3 — 41 By (x)e Xlv, (B2)
p=291r0 ) Ay(x)e — 20Q(1 ~ )BT, (BY)
o1z = 2Gix(A1(X)|xle™ ™ + T Az (x)e ™™ + ylx|Bi(x)e X
+(1 = 2vy) By (x)e XI¥), (B4)
o2 = 2G(x* (A1 (x)e X + Ay (x)e™™) + 2(1 — wy) x| Bi(x)e X
+yx*Bi(x)e W), (B5)
011 = 2G(—yx*Bi(x)e XV — (x® A, (x)e XV + M Ay (x)e ™)
+2VU|X|Bl(X)e_|XIy). (B6)

Appendix C. Dislocation solutions

In this appendix we list the dislocation solutions for a poroelastic material that
are unmixed in the pore pressure boundary condition on the glide or opening
plane. The jump in displacement for the shear dislocations is taken to be

y=04 _ 2b(1 — vu) TH(t)H(—x), (C1)

[Ul]y=0_ =T a
with a similar representation for the tensile dislocation with u; replaced by wus.
These solutions can be deduced rapidly from the potentials in Appendix 2 and
transform results in Appendix 1 above. The unmixed cases are well known and
can be deduced from the complex variable approach of [RC| or alternatively by
noticing that the fluid response and elastic responses uncouple as in Detournay
& Cheng (1987). In particular the unmixed dislocations can be shown to be
identical to an elastic dislocation with a dipole at the end of the dislocation
orientated to maintain the pore pressure boundary condition. Note we do not
consider dislocations that would have discontinuous pore pressure or pore pressure
gradients ahead of the dislocation. These have been treated by Rudnicki (1987)
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in the context of the re-fracturing of a pre-existing geological fault whose faces
have becomes blocked by clay. These solutions are not applicable to the fracture
of ‘virgin’ rock so we do not consider them here. These solutions can also be
derived using the potentials; however, the transforms are often more awkward to
invert for these cases.

Below a double overbar denotes both Fourier and Laplace transformed quan-
tities, a single overbar denotes Laplace transformed quantities and no overbar
gives the field variable in real time and space. The inverse Fourier and Laplace
transforms required are given in Appendix A above. In our applications above we
work directly with integral equations deduced from a distribution of displacement
or pore pressure dislocations.

When evaluating the inverse transforms associated with the dislocations there
is no advantage in working in the scaled variables. There is no convenient length
scale to non-dimensionalize with, so we write

I' =x*+s/c, (C2)

in the following expressions. The functions I'x below are now taken to be (x F
i(s/c)¥/?)/2 with branch cuts taken from =i(s/c)'/? to 4ico. As in the text we
take € below to be defined as € = (c/s)/2.

We also note that we have considered the Heaviside step function H(—z) to be
the limit as d — 0 in the function e? for x < 0, 0 for z > 0. Hence, we take the
Fourier transform of H(—x) to be 1/(ix) and take it as a minus function where
necessary.

(a) The gliding (shear) dislocation with permeable faces

2B(1+ vy,)7b

= ____33__(6—1“1/ _ e—lxly), (C3)

ﬁ:‘w (%Kl(r/e)_%), (C4)

p— 2B(1;— z/u)b?% (H(t) B e—r2/4ct) ’ (C5)

T = ——2%% (X?ez(e"x'y —e 1Y) %e"x'y + Me_lx'y) , (Ce6)

Ty = Z% (%y; +(1 - Vu)9+% (—% + %Kl(r/f) + %KO(T/€)>> , (CT7)

"y = é ((% + (1)) H() + :%ff (e H — 1)) : (C8)

T, — % (Eﬁf(pe—ry ~ eI 4 yelxlv 4 %@xly) , (C9)
Uy = é—é_s (i—z — (1 —2uv,)logr

_|_% <(:v2 ;4y2)6 — (:Uz?;yZ)Kl(r/e) - ryTiKO(r/6)>) ; (C10)
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b [,y
w = o ((73 — (1—2,)logr)H(?)
1 [ (2? —y?)ct B
(2 T g Ae 1p (— . 11
= (- 1 m())) (1)

The stresses follow by differentiation and the constants in the potentials are given
by

B, = —wb/2Gs|x|, Ax = —mb/2GsT(s/c), (C12)
Ai+ Ay = —2(1—v,)By/|x]. (C13)

(b) The opening dislocation with impermeable faces
The constants in the potentials are given by

B, = —bn/2Gixs, As = —xbr/7(s/c)2GisT, (C14)

(¢) Point jump in pore pressure gradient
Let us take an impulsively applied point jump in the pore pressure gradient on
the x axis
op op
ay y=04 8:[/ y=0_
with continuity of stress and displacement across the x axis. From symmetry this

is equivalent to taking 012 = us = 0 on « = 0. This is the solution required for
the mixed problem in §3. The constants in the potentials are given by

B, =0, IT(s/c)Ay =—|x|n(s/c)A; = —7q0/2Gs. (C17)

The field variables can be evaluated quite straightforwardly by using the inverse
transform results in Appendix A.

= 2mqob(x)H (t)2B(1 + v,)/3, (C16)

Appendix D. Near crack tip elastic eigensolutions

When using the reciprocal theorem we require the near crack tip fields for
stress fields which are singular O(r~%/2) and O(r~%2). Here we give the near
notch tip fields for a notch of half angle 3 loaded anti-symmetrically. The near
crack tip fields are well known (for example, Sternberg & Koiter 1958) and are
given here for completeness, they are deduced using the Mellin transform as in
the similar tensile cases of Appendix D of [ACa]. The A below are the zeros of
sin(2A83) — Asin 20, and we consider notches which have 8* < 3 < m, where 3*
is the root of tan(28) = 283. The Ky(s) in the results below are the intensity

factors, for the eigensolutions these Ky(s) are written in the text as Ky(s) to
distinguish them from the stress intensity factors. The results for a crack are
recovered by taking =7 and A = —1/2,1/2.

Gr(r,0,8) = —2?22()22 ((A+3)sin(A+1)fsin(A —1)4
—(A = 1)sin(A + 1)Bsin(A — 1)8)r=*"1, (D1)
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KH(S)
2(2m)1/2
—(A = 1)sin(A + 1)Bcos(A — 1)B)r=>71, (D2)
()\ — 1)?11(3)
2(2m)1/2
—sin(A + 1)Bsin(A — 1)8)r=271, (D3)
KH(S)
4G\ (2m)1/2
—(A—=1)sin(A + 1)Bsin(A — 1)8)r™?, (D4)
fH(S)
4G A(2m)1/2
+(A = 1) sin(A + 1) Bcos(A — 1)8)r 2. (D5)

In the mixed anti-symmetric case the near crack tip pore pressure fields are given
by

Gro(r,0,s) = ((A+1)sin(A — 1)Bcos(A +1)8

Too(r,0,5) = (sin(A —1)@sin(A + 1)8

U, (r,0,s) = (sin(A — 1)Bsin(A + 1)8((A — 1) + 4(1 — v))

Uy(r,6,s) = (41 =v) = (A+1))cos(A+1)fsin(A — 1)3

p(r,0,s) = Ky(s)(2m) /2028 gin (20 + 1)70/28), (D6)
with n taking integer values.
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